Булевой алгеброй называется непустое множество A с двумя бинарными операциями (конъюнкцией и дизъюнкцией), унарной операцией отрицание и двумя выделенными элементами: 0 (или Ложь) и 1 (или Истина). Булева алгебра работает над множеством логических значений и наиболее часто используется в логике, так как является точной моделью классического исчисления высказываний.
Метод Монте-Карло – общее название группы численных методов, основанных на получении большого числа реализаций стохастического (случайного) процесса, который формируется таким образом, чтобы его вероятностные характеристики совпадали с аналогичными величинами решаемой задачи. Используется для решения задач в областях физики, математики, экономики, оптимизации, теории управления и других.
Математическая логика (теоретическая логика, символическая логика) – раздел математики, изучающий доказательства и вопросы оснований математики. Применение в логике математических методов становится возможным тогда, когда суждения формулируются на некотором точном языке. Такие точные языки имеют две стороны: синтаксис и семантику. Синтаксисом называется совокупность правил построения объектов языка (обычно называемых формулами). Семантика – совокупность соглашений, описывающих наше понимание формул (или некоторых из них) и позволяющих считать одни формулы верными, а другие – нет.